is little energy difference between the possible configurations. The observed configuration is compared with the calculated $\delta \lambda$ minimum in Fig. 3. Configurations in which one en ring has an envelope conformation are approximately $21 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher in energy. The thermal parameters of the en C atoms are not large enough to be due either to interconversion between conformations or to a statistical distribution of different conformers in the crystal. The calculations do, however, indicate that for either λ or δ configurations of either ring the energy surface near the minimum is very shallow.

Fig. 4 shows, for en ring II (in the $\delta \lambda$ configuration), the energy for slightly differing conformations. This shallow energy minimum is believed to be responsible for the large libration of the en C atoms in the title compound and it seems likely that similar arguments apply to other $\mathrm{Co}^{\text {III }}$ (en) $)_{2} L_{2}$ systems when L_{2} is not too bulky.

The perchlorate ions are poorly determined, the O atoms exhibiting large anisotropic thermal parameters. In consequence the $\mathrm{Cl}-\mathrm{O}$ lengths (Table 2), being uncorrected for thermal vibration, are shorter than expected. The perchlorate ions and the water molecules are involved in hydrogen-bonding interactions as listed in Table 3 and marked on Fig. 2.

The author thanks Dr W. G. Jackson for supplying the crystals, Drs G. B. Robertson and A. M. Sargeson
for their interest and the Australian National University Computer Centre for the use of their facilities.

References

Bennett, M. A., Matheson, T. W., Robertson, G. B., Smith, A. K. \& Tucker, P. A. (1978). In preparation.
Buckingham, D. A., Maxwell, I. E., Sargeson, A. M. \& Snow, M. R. (1970). J. Am. Chem. Soc. 92, 3617-3626.
Chaney, M. O. \& Steinrauf, L. K. (1974). Acta Cryst. B30, 711-716.
Churchill, M. R. \& Kalra, K. L. (1974). Inorg. Chem. 13, 1427-1434.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gollogly, J. R. \& Hawkins, C. J. (1970). Inorg. Chem. 9, 576-582.
Interatomic Distances and Configuration in Molecules and Ions (1965). Supplement. Spec. Publ. No. 18. London: The Chemical Society.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press.
Jackson, W. G., Sargeson, A. M. \& Tucker, P. A. (1977). J. Chem. Soc. Chem. Commun. 199-200.

Molecular Structure by Diffraction Methods (1975). Vol. III, p. 328. Specialist Periodical Reports. London: The Chemical Society.
Shintani, H., Sato, S. \& Saito, Y. (1976). Acta Cryst. B32, 1184-1188.

Ammine[1-(2-hydroxyphenyl)-3,5-diphenylformazanatolcopper(II), $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cu}^{11} \mathrm{~N}_{5} \mathrm{O}$, and Ammine[1-(2-hydroxyphenyl)-3,5-diphenylformazanato]nickel(II), $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{Ni}^{\mathrm{II}} \mathrm{O}$

By W. E. Renkema
Chemical Laboratory of the Free University, De Lairessestraat 174, Amsterdam, The Netherlands
and C. N. Lute and C. H. Stam
Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam, The Netherlands

(Received 13 July 1978; accepted 22 August 1978)

Abstract

$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cu}^{\mathrm{II}} \mathrm{N}_{5} \mathrm{O}$ is monoclinic, $P 2 / n, a=24 \cdot 231$ (4), $b=6.5223$ (5), $c=11.449$ (2) $\AA, \beta=90.30(3)^{\circ}, Z=4$. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{Ni}^{\mathrm{II}} \mathrm{O}$ is triclinic, $P \overline{1}, a=6.096(3), b=$ $12 \cdot 10(4), c=13 \cdot 60(5) \AA, \quad \alpha=115 \cdot 2(3), \beta=$ $94.3(2), \gamma=93.4(3)^{\circ}, Z=2$. The structures were refined to final R values of 4.8% for 2788 significant

reflections and 4.7% for 2029 significant reflections respectively. Both structures have similar approximately square coordination of the metal atoms in which the two outer N atoms of the formazan part, the O atom of the phenyl group and the N atom of the NH_{3} molecule are involved. The structures consist of columns of similarly stacked units which are packed in a slightly different manner in the two structures.

Introduction

As part of a study on coordination of multidentate ligands with various donor atoms and the role of complex formation in metal-ion oxidation the structures of ammine [1 -(2 -hydroxyphenyl)-3,4-diphenylformazanatolcopper(II) (CUFORM) and of the analogous Ni^{11} complex (NIFORM) are reported. The coordination of the metal ion is indispensable information for constructing mechanistic schemes for complex formation (Balt \& Renkema, 1977a).

Experimental

CUFORM

CUFORM was prepared by the procedure of Balt \& Renkema (1977b). Usually this results in a microcrystalline powder. After many attempts some larger crystals suitable for single-crystal X-ray work were obtained. These had a slightly higher O content than the microcrystalline product (4.87 against 4.05%).

Crystals of CUFORM are monoclinic, space group $P 2 / n$, with $a=24.231$ (4), $b=6.5223$ (5), $c=$

Table 1. Fractional coordinates with e.s.d.'s in parentheses

	CUFORM$(M=\mathrm{Cu})$			NIFORM$(M=\mathrm{Ni})$		
	x	y	z	x	${ }^{\prime}$	z
M	0.22431 (2)	0.09997 (10)	0.42132 (6)	$0 \cdot 2715$ (1)	$0 \cdot 3720$ (1)	0.5597 (1)
C(1)	0.1754 (2)	-0.3135 (7)	0.5355 (4)	$0 \cdot 7050$ (8)	$0 \cdot 2936$ (4)	0.6418 (4)
$\mathrm{C}(2)$	$0 \cdot 1537$ (2)	-0.4958 (8)	0.5981 (4)	0.9000 (8)	$0 \cdot 2540$ (4)	0.6827 (4)
C(3)	0.0963 (2)	-0.5383 (9)	0.5963 (5)	0.9815 (10)	0.3100 (5)	0.7934 (4)
C(4)	0.0769 (2)	-0.7088 (10)	0.6574 (6)	1-1654 (10)	0.2715 (6)	0.8306 (4)
C(5)	$0 \cdot 1110$ (3)	-0.8327 (10)	$0 \cdot 7200$ (6)	1.2708 (10)	$0 \cdot 1787$ (5)	0.7619 (5)
C(6)	0.1682 (3)	-0.7959 (9)	0.7198 (6)	1-1943 (9)	$0 \cdot 1227$ (5)	$0 \cdot 6520$ (5)
C(7)	$0 \cdot 1878$ (3)	-0.6262 (9)	$0 \cdot 6597$ (5)	1.0119 (9)	$0 \cdot 1610$ (5)	0.6128 (4)
C(8)	0.1111 (2)	0.0924 (7)	0.3821 (4)	0.3465 (8)	0.5183 (4)	0.7797 (4)
C(9)	$0 \cdot 1328$ (2)	0.2664 (8)	0.3244 (4)	$0 \cdot 1536$ (9)	0.5475 (5)	0.7412 (4)
$\mathrm{C}(10)$	0.0953 (3)	$0 \cdot 3978$ (9)	$0 \cdot 2682$ (5)	0.0361 (9)	$0 \cdot 6366$ (5)	0.8148 (5)
$\mathrm{C}(11)$	0.0393 (3)	0.3557 (11)	0.2695 (6)	0.1115 (11)	0.6921 (6)	0.9241 (5)
$\mathrm{C}(12)$	0.0189 (3)	0.1859 (11)	0.3292 (6)	0.3071 (11)	$0 \cdot 6616$ (6)	0.9633 (4)
C(13)	$0 \cdot 0544$ (2)	0.0548 (10)	0.3839 (5)	0.4255 (9)	0.5749 (5)	0.8921 (4)
C(14)	$0 \cdot 3157$ (2)	-0.1747 (7)	0.4956 (4)	0.4276 (8)	$0 \cdot 1880$ (5)	0.3743 (4)
C(15)	$0 \cdot 3386$ (3)	-0.2724 (9)	0.5907 (5)	$0 \cdot 3228$ (10)	0.0715 (5)	0.3331 (5)
C(16)	$0 \cdot 3956$ (3)	-0.2961 (10)	0.5979 (6)	0.2735 (12)	0.0026 (6)	$0 \cdot 2224$ (5)
C(17)	$0 \cdot 4294$ (3)	-0.2257 (11)	0.5112 (6)	0.3360 (12)	0.0491 (6)	$0 \cdot 1519$ (5)
C(18)	$0 \cdot 4062$ (2)	-0.1286 (10)	0.4143 (6)	0.4427 (11)	$0 \cdot 1655$ (6)	$0 \cdot 1919$ (5)
C(19)	$0 \cdot 3493$ (2)	-0.1033 (7)	0.4055 (5)	0.4877 (10)	$0 \cdot 2346$ (5)	$0 \cdot 3032$ (4)
$\mathrm{N}(1)$	$0 \cdot 1524$ (2)	-0.0249 (6)	0.4347 (3)	0.4378 (7)	0.4241 (4)	0.6929 (4)
N (2)	$0 \cdot 1368$ (2)	-0.1890 (7)	0.4887 (4)	$0 \cdot 6083$ (7)	$0 \cdot 3867$ (4)	0.7214 (4)
$\mathrm{N}(3)$	$0 \cdot 2305$ (2)	-0.3002 (6)	0.5335 (4)	0.6411 (6)	0.2370 (3)	0.5348 (3)
N(4)	$0 \cdot 2570$ (2)	-0.1452 (6)	0.4857 (4)	0.4634 (7)	$0 \cdot 2636$ (4)	0.4907 (3)
N(5)	$0 \cdot 2867$ (2)	$0 \cdot 2995$ (7)	0.4320 (4)	0.0473 (7)	$0 \cdot 3237$ (4)	0.4362 (3)
$\mathrm{O}(1)$	$0 \cdot 1864$ (2)	$0 \cdot 2984$ (6)	0.3245 (3)	$0 \cdot 0870$ (6)	$0 \cdot 4908$ (3)	0.6348 (3)
$\mathrm{O}(2)^{*}$	$0 \cdot 25$	$0 \cdot 66$	0.25			
H(3)	0.068	-0.441	0.547	0.923 (7)	0.371 (4)	0.833 (4)
H(4)	0.032	-0.741	0.655	1.215 (9)	$0 \cdot 319$ (5)	0.901 (5)
H(5)	0.095	-0.960	0.771	1.422 (12)	$0 \cdot 151$ (6)	0.792 (5)
H(6)	0.196	-0.897	0.766	1.270 (9)	0.055 (5)	0.595 (4)
H(7)	0.232	-0.595	0.661	0.966 (8)	$0 \cdot 128$ (4)	0.540 (4)
H(10)	0.111	0.532	0.221	-0.100 (8)	0.655 (5)	0.788 (4)
H(11)	0.011	0.459	0.225	0.047 (11)	0.758 (6)	0.977 (5)
H(12)	-0.026	0.156	0.331	0.352 (9)	0.699 (5)	1.045 (4)
H(13)	0.039	-0.082	0.431	0.549 (8)	0.543 (4)	0.910 (4)
H(15)	0.313	-0.326	0.662	$0 \cdot 278$ (10)	0.044 (5)	$0 \cdot 382$ (5)
H(16)	0.414	-0.378	0.673	$0 \cdot 173$ (13)	-0.077 (7)	$0 \cdot 190$ (6)
H(17)	0.474	-0.245	0.517	0.310 (8)	0.008 (5)	0.081 (4)
H(18)	0.432	-0.067	0.345	0.489 (11)	$0 \cdot 191$ (6)	0.147 (5)
H(19)	0.331	-0.032	0.329	0.555 (10)	0.319 (5)	0.334 (5)
H(21)	0.282	0.443	0.463	-0.075 (9)	$0 \cdot 300$ (5)	0.442 (5)
H(22)	0.326	0.311	0.468	0.073 (9)	0.269 (5)	0.381 (5)
H(23)	0.303	0.387	0.367	0.005 (11)	$0 \cdot 389$ (6)	0.420 (5)

11.449 (2) $\dot{A}, \beta=90 \cdot 30(3)^{\circ}, V=1809.3 \AA^{3}, Z=4$, and $d_{c}=1.45 \mathrm{Mg} \mathrm{m}^{-3}$. The alternative space group $P n$ could be ruled out on the basis of the Patterson synthesis. 3229 independent reflections were measured on a Nonius CAD-4 automatic single-crystal diffractometer with graphite-monochromated $\mathrm{Cu} \mathrm{K}_{\mathrm{a}}$ radiation. 441 of these had $I<2 \sigma(I)$ and were treated as unobserved. No absorption correction was applied ($\mu=1.98 \mathrm{~mm}^{-1}$; crystal dimensions: $0.7 \times 0.3 \times 0.1$ $\mathrm{mm})$.

NIFORM

NIFORM was prepared by adding a solution of 2.6 $\mathrm{g} \mathrm{Ni}{ }^{\mathrm{II}}$ nitrate hexahydrate in 10 ml water slowly to a warm solution of 2.4 g of the corresponding formazan in 700 ml methanol and 60 ml concentrated ammonia. This solution was refluxed for 0.5 h and cooled to room temperature, after which the complex was filtered off, washed with methanol and dried in vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$. Analysis: C 58.6 (58.50), H 4.36 (4.39), N 18.1 (17.96), O $4.33(4 \cdot 10)$, Ni 14.9% (15.5%) (in parentheses are the calculated percentages for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{NiO}$).

Crystals of NIFORM are triclinic, space group $P \overline{1}$, with $a=6 \cdot 096(3), b=12 \cdot 10(4), c=13 \cdot 60(5) \AA$ A,$~ a=$ $115 \cdot 2(3), \beta=94 \cdot 3(2), \gamma=93.4(3)^{\circ}, V=900 \cdot 7 \AA^{3}$, $Z=2$, and $d_{c}=1.45 \mathrm{Mg} \mathrm{m}^{-3}$. The alternative space group $P 1$ could be eliminated on the basis of the Patterson synthesis. 2769 independent reflections were collected as described for CUFORM; 740 of these had $I<2 \sigma(I)$ and were treated as unobserved. No absorption correction was applied ($\mu=1.82 \mathrm{~mm}^{-1}$; crystal dimensions: $0.3 \times 0.1 \times 0.05 \mathrm{~mm}$).

Structure determination and refinement

CUFORM

The coordinates of the Cu atom could be derived from a Patterson synthesis in terms of space group $P 2 / n$. From a Fourier synthesis based on Cu , all but one of the remaining non-hydrogen atoms could be located; the position of this atom was determined from geometrical considerations. After isotropic leastsquares refinement a difference synthesis indicated all the H atoms. Further anisotropic refinement with weights $w=1 /\left(3.0+F_{o}+0.015 F_{o}^{2}\right)$ and a dispersion correction for Cu converged to $R=5.4 \%$. The H atoms were kept fixed with isotropic temperature parameters equivalent to those of the carrier atoms. A final difference synthesis showed only one significant feature: a peak of height $2.5 \mathrm{e}^{-3}$ at $y=0.66$ along the twofold axis at $x=\frac{1}{4}, z=\frac{1}{4}$. Since the chemical analysis showed an excess of O, probably due to the occlusion of water by the crystal, the extra peak was
ascribed to O . Inserting 0.3 of an O atom at the above position resulted in a final R of 4.8% for the 2788 observed reflections. The final parameters are listed in Table 1.*

NIFORM

An E^{2} Patterson synthesis could be interpreted in terms of space group $P \overline{1}$ and yielded the positions of all non-hydrogen atoms. Isotropic least-squares refinement reduced R from 28 to 10%. Most of the H atoms were visible in a subsequent difference synthesis. Continued refinement, anisotropic for the nonhydrogen atoms and isotropic for H , in the course of which the missing H atoms were located, reduced R to 5.9%. A dispersion correction for Ni was included. The structure factors revealed discrepancies for a number of strong reflections in which systematically $\left|F_{c^{\prime}}<\right| F_{o}$.

[^0]
(a)

(b)

Fig. 1. Shape of the molecules: (a) CUFORM, (b) NIFORM.
$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cu}^{1 \mathrm{~N}} \mathrm{~N}_{5} \mathrm{O}$ AND $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{Ni}^{11} \mathrm{O}$
Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

	$M=\mathrm{Cu}$	$M=\mathrm{Ni}$		$M=\mathrm{Cu}$	$M=\mathrm{Ni}$
M-O	1.933 (4)	1.868 (7)	$\mathrm{C}(8)-\mathrm{N}(1)$	1.394 (7)	1.425 (9)
$M-\mathrm{N}(1)$	1.930 (5)	1.840 (9)	C(9)-C(10)	1.403 (8)	1.399 (9)
$M-\mathrm{N}(4)$	1.929 (4)	1.808 (7)	$\mathrm{C}(9)-\mathrm{O}(1)$	1.315 (7)	1.329 (9)
$M-\mathrm{N}(5)$	1.998 (5)	1.939 (8)	C(10)-C(11)	1.385 (10)	1.373 (11)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.486 (7)	1.466 (8)	C(11)-C(12)	1.363 (10)	1.403 (11)
$\mathrm{C}(1)-\mathrm{N}(2)$	$1 \cdot 348$ (7)	1.388 (8)	C(12)-C(13)	1.393 (9)	$1 \cdot 375$ (10)
$\mathrm{C}(1)-\mathrm{N}(3)$	1.338 (7)	1.333 (9)	C(14)-C(15)	1.376 (8)	1.370 (10)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.418 (7)	$1 \cdot 398$ (9)	C(14)-C(19)	1.397 (7)	1.372 (11)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.378 (8)	1.383 (9)	$\mathrm{C}(14)-\mathrm{N}(4)$	1.439 (7)	1.444 (9)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.397 (8)	1.381 (10)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.392 (10)	1.374 (11)
C(4)-C(5)	1.358 (9)	1.353 (10)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.370 (10)	1.368 (12)
C(5)-C(6)	1.407 (10)	1.382 (11)	C(17)-C(18)	1.393 (10)	1.374 (11)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.388 (9)	1.385 (9)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.392 (7)	1.379 (10)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.416 (7)	1.377 (8)	$\mathrm{N}(1)-\mathrm{N}(2)$	1.294 (7)	1.257 (7)
C(8)-C(13)	1.396 (7)	1.414 (9)	$\mathrm{N}(3)-\mathrm{N}(4)$	$1 \cdot 318$ (6)	1.321 (7)
$\mathrm{O}-\mathrm{M}-\mathrm{N}(1)$	84.4 (2)	$85 \cdot 6$ (3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.5 (5)	119.1 (5)
$\mathrm{O}-M-\mathrm{N}(4)$	$165 \cdot 2$ (2)	$176 \cdot 7$ (2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	119.7 (5)	118.6 (5)
$\mathrm{O}-\mathrm{M}-\mathrm{N}(5)$	87.5 (2)	$85 \cdot 2$ (3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(1)$	122.7 (5)	$122 \cdot 3$ (6)
$\mathrm{N}(1)-M-\mathrm{N}(4)$	89.4 (2)	92.3 (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.4 (6)	$120 \cdot 0$ (6)
$\mathrm{N}(1)-M-\mathrm{N}(5)$	$162 \cdot 4$ (2)	168.7 (2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120 \cdot 9$ (7)	$120 \cdot 8$ (6)
$\mathrm{N}(4)-M-\mathrm{N}(5)$	$102 \cdot 0$ (2)	97.2 (3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120 \cdot 0$ (7)	$120 \cdot 0$ (5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(2)$	$115 \cdot 3$ (4)	$114 \cdot 8$ (5)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	120.1 (6)	118.7 (6)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(3)$	$114 \cdot 6$ (4)	117.3 (4)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	$120 \cdot 3$ (5)	119.0 (5)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(3)$	$130 \cdot 1$ (5)	127.9 (5)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{N}(4)$	$121 \cdot 2(5)$	120.7 (6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.9 (5)	$121 \cdot 2(5)$	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{N}(4)$	118.5 (4)	$120 \cdot 2$ (5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	121.9 (5)	$121 \cdot 1$ (5)	C(14)-C(15)-C(16)	119.6 (6)	120.9 (7)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	118.2 (5)	$117 \cdot 6$ (6)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	121.1 (7)	119.7 (7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.8 (5)	$120 \cdot 5$ (5)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.3 (7)	120.0 (6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$122 \cdot 2$ (6)	121.4 (5)	C(17)-C(18)-C(19)	$120 \cdot 5$ (6)	119.7 (7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.6 (6)	119.1 (6)	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	119.2 (5)	$120 \cdot 6$ (6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	118.5 (7)	120.4 (5)	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{N}(2)$	116.7 (5)	115.0 (5)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	122.7 (6)	$120 \cdot 9$ (5)	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{N}(1)$	119.0 (5)	118.5 (5)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	121.0 (5)	$121 \cdot 3$ (5)	$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{N}(4)$	123.0 (5)	121.8 (4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)$	112.0 (4)	$110 \cdot 5$ (5)	$\mathrm{C}(14)-\mathrm{N}(4)-\mathrm{N}(3)$	$110 \cdot 4$ (4)	$111 \cdot 0$ (4)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(1)$	$127 \cdot 0$ (5)	128.1 (5)			

Therefore a few more cycles of refinement were run with an extinction parameter, g, included $\left(F_{c}^{\text {corr }}=F_{c}\{1\right.$ $+g\left[\left(1+\cos ^{4} 2 \theta\right) /\left(1+\cos ^{2} 2 \theta\right) \mid F_{c}^{2}\right\}^{-1 / 4}$ (Larson, 1970). The final R was 4.7% for the 2029 observed reflections. The final g was 1.26×10^{-5}. A weighting function $w=1 /\left(5 \cdot 2+F_{o}+0.017 F_{o}^{2}\right)$ was applied. The final parameters are listed in Table 1.*

Results and discussion

The shapes of the molecules and the atomic numbering are given in Fig. 1. The bond distances and angles are listed in Table 2. The geometries of the coordination around Cu and Ni are depicted in Fig. 2. The bonds of Ni to its four coordinating atoms are systematically shorter $(0.06-0.12 \AA)$ than the corresponding bonds around Cu . The coordination around Ni is also considerably more planar than that around Cu . In both

[^1]molecules the three benzene rings are planar within the limits of accuracy, as is the formazan moiety $N(1) N(2) C(1) N(3) N(4)$. Table 3 gives the angles between the three rings and the formazan moiety. It can be seen that the part $\mathrm{C}(1)-\mathrm{C}(13), \mathrm{O}, \mathrm{N}(1)-\mathrm{N}(4)$, $\mathrm{Cu}(\mathrm{Ni})$ is approximately planar (largest deviations from the best plane 0.11 and $0.09 \AA$ respectively). The ring $\mathrm{C}(14)-\mathrm{C}(19)$ is forced out of this plane by the presence of the NH_{3} ligand, and is rotated by 30° in CUFORM, and by 80° in NIFORM because of the more compact coordination around Ni .

Fig. 2. Coordinations around the metal ions. The underlined numbers are the distances from the best plane through the four coordinating atoms.

Table 3. Angles $\left(^{\circ}\right)$ between various planes
Plane (1): $C(2)-C(7)$
Plane (II): C(8)-C(13),O
Plane (III): C(14)-C(19)
Plane (IV): $\mathrm{N}(1) \mathrm{N}(2) \mathrm{C}(1) \mathrm{N}(3) \mathrm{N}(4)$

CUFORM

	(II)	(III)	(IV)	(II)	(III)	(IV)
(I)	3	29	6	5	79	2
(II)		31	4		84	3
(III)			32			80

NIFORM

(a)

(b)

Fig. 4. Projections of (a) CUFORM along [010], and (b) NIFORM along [100]. The dashed line indicates the B-centred cell (see text).
columns is different: the diad axes in the cell of CUFORM have been replaced by inversion centres in NIFORM. In both structures the columns are connected in pairs by hydrogen bonds between $\mathrm{N}(5)$ and O of lengths 3.01 and $2.93 \AA$ for CUFORM and NIFORM respectively (Fig. 4).

We thank Mr D. Heijdenrijk for valuable technical assistance.

References

Balt, S. \& Renkema, W. E. (1977a). Inorg. Chim. Acta, 22, 161-168.
Balt, S. \& Renkema, W. E. (1977b). J. Coord. Chem. 6, 201-205.
Larson, A. C. (1970). Crystallographic Computing, p. 292. Copenhagen: Munksgaard.

[^0]: * Lists of structure factors and thermal parameters for both compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33881 (22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * See previous footnote.

